Applied Strength Of Materials
DOWNLOAD >>>>> https://cinurl.com/2tDMpz
Strength of materials principles are applied to the stress analysis of machine components and structures. The effects of buckling and combined bending, torsion, and axial loadings are studied together with the effects of stress risers due to geometrical complexities. Topics include: 3D stress transformations; principal stresses; Mohr's circle; failure criteria; torsion of non-circular and hollow cross sections; stress concentration factors; equilibrium and energy methods;global and local buckling; introduction to finite element methods; introduction to composites.
The field of strength of materials (also called mechanics of materials) typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties (geometric properties) such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.
The theory began with the consideration of the behavior of one and two dimensional members of structures, whose states of stress can be approximated as two dimensional, and was then generalized to three dimensions to develop a more complete theory of the elastic and plastic behavior of materials. An important founding pioneer in mechanics of materials was Stephen Timoshenko.
In the mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation. The field of strength of materials deals with forces and deformations that result from their acting on a material. A load applied to a mechanical member will induce internal forces within the member called stresses when those forces are expressed on a unit basis. The stresses acting on the material cause deformation of the material in various manners including breaking them completely. Deformation of the material is called strain when those deformations too are placed on a unit basis.
The stresses and strains that develop within a mechanical member must be calculated in order to assess the load capacity of that member. This requires a complete description of the geometry of the member, its constraints, the loads applied to the member and the properties of the material of which the member is composed. The applied loads may be axial (tensile or compressive), or rotational (strength shear). With a complete description of the loading and the geometry of the member, the state of stress and state of strain at any point within the member can be calculated. Once the state of stress and strain within the member is known, the strength (load carrying capacity) of that member, its deformations (stiffness qualities), and its stability (ability to maintain its original configuration) can be calculated.
The calculated stresses may then be compared to some measure of the strength of the member such as its material yield or ultimate strength. The calculated deflection of the member may be compared to deflection criteria that are based on the member's use. The calculated buckling load of the member may be compared to the applied load. The calculated stiffness and mass distribution of the member may be used to calculate the member's dynamic response and then compared to the acoustic environment in which it will be used.
Material resistance can be expressed in several mechanical stress parameters. The term material strength is used when referring to mechanical stress parameters. These are physical quantities with dimension homogeneous to pressure and force per unit surface. The traditional measure unit for strength are therefore MPa in the International System of Units, and the psi between the United States customary units.Strength parameters include: yield strength, tensile strength, fatigue strength, crack resistance, and other parameters.[citation needed]
Ultimate strength is an attribute related to a material, rather than just a specific specimen made of the material, and as such it is quoted as the force per unit of cross section area (N/m2). The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens.[12] For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in² or pounds-force per square inch. This unit is often abbreviated as psi. One thousand psi is abbreviated ksi.
A factor of safety is a design criteria that an engineered component or structure must achieve. F S = U T S / R {\displaystyle FS=UTS/R} , where FS: the factor of safety, R: The applied stress, and UTS: ultimate stress (psi or N/m2)[13]
Design stresses that have been determined from the ultimate or yield point values of the materials give safe and reliable results only for the case of static loading. Many machine parts fail when subjected to a non-steady and continuously varying loads even though the developed stresses are below the yield point. Such failures are called fatigue failure. The failure is by a fracture that appears to be brittle with little or no visible evidence of yielding. However, when the stress is kept below "fatigue stress" or "endurance limit stress", the part will endure indefinitely. A purely reversing or cyclic stress is one that alternates between equal positive and negative peak stresses during each cycle of operation. In a purely cyclic stress, the average stress is zero. When a part is subjected to a cyclic stress, also known as stress range (Sr), it has been observed that the failure of the part occurs after a number of stress reversals (N) even if the magnitude of the stress range is below the material's yield strength. Generally, higher the range stress, the fewer the number of reversals needed for failure.
There are four failure theories: maximum shear stress theory, maximum normal stress theory, maximum strain energy theory, and maximum distortion energy theory. Out of these four theories of failure, the maximum normal stress theory is only applicable for brittle materials, and the remaining three theories are applicable for ductile materials.Of the latter three, the distortion energy theory provides most accurate results in a majority of the stress conditions. The strain energy theory needs the value of Poisson's ratio of the part material, which is often not readily available. The maximum shear stress theory is conservative. For simple unidirectional normal stresses all theories are equivalent, which means all theories will give the same result.
A material's strength is dependent on its microstructure. The engineering processes to which a material is subjected can alter this microstructure. The variety of strengthening mechanisms that alter the strength of a material includes work hardening, solid solution strengthening, precipitation hardening, and grain boundary strengthening and can be quantitatively and qualitatively explained. Strengthening mechanisms are accompanied by the caveat that some other mechanical properties of the material may degenerate in an attempt to make the material stronger. For example, in grain boundary strengthening, although yield strength is maximized with decreasing grain size, ultimately, very small grain sizes make the material brittle. In general, the yield strength of a material is an adequate indicator of the material's mechanical strength. Considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending its microstructural properties and the desired end effect. Strength is expressed in terms of the limiting values of the compressive stress, tensile stress, and shear stresses that would cause failure. The effects of dynamic loading are probably the most important practical consideration of the strength of materials, especially the problem of fatigue. Repeated loading often initiates brittle cracks, which grow until failure occurs. The cracks always start at stress concentrations, especially changes in cross-section of the product, near holes and corners at nominal stress levels far lower than those quoted for the strength of the material.
This text is an established bestseller in engineering technology programs, and the Seventh Edition of Applied Strength of Materials continues to provide comprehensive coverage of the mechanics of materials. Focusing on active learning and consistently reinforcing key concepts, the book is designed to aid students in their first course on the strength of materials.
Introducing the theoretical background of the subject, with a strong visual component, the book equips readers with problem-solving techniques. The updated Seventh Edition incorporates new technologies with a strong pedagogical approach. Emphasizing realistic engineering applications for the analysis and design of structural members, mechanical devices, and systems, the book includes such topics as torsional deformation, shearing stresses in beams, pressure vessels, and design properties of materials. A "big picture" overview is included at the beginning of each chapter, and step-by-step problem-solving approaches are used throughout the book.
Presented to your attention, this special edition contains articles that reflect the latest research achievements and engineering solutions in materials science, technologies of additive manufacturing, thermal engineering and medical signal and image processing. This edition will be helpful to researchers and engineers whose professional activity is related to materials science, machinery and biomedical engineering. 781b155fdc